Analisi non lineare e calcolo delle variazioni

La modellizzazione di molti problemi fisici porta alla ricerca di soluzioni di equazioni differenziali, ordinarie o a derivate parziali. Nella grande maggioranza dei casi i problemi da affrontare sono non lineari, perchè tali sono i fenomeni che essi modellizzano.

Molteplici sono le metodologie che sono state sviluppate per trattare i fenomeni non lineari da un punto di vista matematico, ma queste possono essere sommariamente classificate nell’ambito di metodi topologici e variazionali. L’uso combinato di queste tecniche permette di trattare un numero pressoché illimitato di problemi. Si possono citare come esempi di tematiche oggetto di ricerca all’interno del gruppo, la teoria dei punti critici e le sue applicazioni ai problemi ellittici ed alla geometria differenziale, i problemi spettrali e di biforcazione, le equazioni di evoluzione paraboliche e le transizioni di fase, l‘equazione di Schrödinger e le sue molteplici applicazioni, i problemi del Calcolo delle Variazioni e l’ottimizzazione, le convergenze variazionali, i problemi iperbolici quali ad esempio l’equazione delle onde non lineare e le sue generalizzazioni.  Fra i temi  di interesse più applicativo si possono evidenziare  meccanica delle fratture,  elastoplasticità, problemi di Stefan, micromagnetismo, condensati di Bose-Einstein, sistemi rate-independent. La ricerca del gruppo verte sia sugli aspetti metodologici “astratti”, sia sulle applicazioni a problemi concreti.

© Politecnico di Torino - Credits