
Voronoi Tessellations: Optimal Quantization and
Modelling Collective Behaviour

Rustum Choksi
McGill University

Mathematics Colloquium
Department of Mathematical Sciences (G.L. Lagrange)

Politecnico di Torino
October 8, 2021

Talk consists of three parts: work of former post doc Xin Yang
Lu, and two PhD students Ivan Gonzalez & Jack Tisdell,
co-supervised with Jean-Christophe Nave.



Voronoi Tessellations: Optimal Quantization and
Modelling Collective Behaviour

Rustum Choksi
McGill University

Mathematics Colloquium
Department of Mathematical Sciences (G.L. Lagrange)

Politecnico di Torino
October 8, 2021

Talk consists of three parts: work of former post doc Xin Yang
Lu, and two PhD students Ivan Gonzalez & Jack Tisdell,
co-supervised with Jean-Christophe Nave.



Voronoi Tessellations

Generators x1, . . . , xN ∈ Ω ⊂ Rn (bounded).
Voronoi tessellation of Ω into associated Voronoi cells Vi , where

Vi = {y ∈ Ω : d(y , xi ) ≤ d(y , xj) for all 1 ≤ j ≤ N}.
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Dual Structure: Delaunay triangularization



Centroidal Voronoi Tessellation and Optimal Quantization

CVT: particular configuration of points x1, . . . , xN with the
property that xi is the centroid of Vi

CVTs are critical points of the “quantization error”:

min
{xi}Ni=1

∫
Ω
dist2

(
y , {xi}Ni=1

)
dy =

N∑
i=1

∫
Vi

|y − xi |2 dy .

Natural Question: Optimal Quantizer (i.e. optimal CVT) ?
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SKIP: Connection with OT: Monge

Transport map q : supp(µ)→ supp(ν) and push forward
probability measure q# µ

(q# µ)(A) = µ
(
q−1(A)

)
∀ Borel subsets A.

Denoting ψ(y) = (y , q(y)), the transport plan π can be recovered
as π = µ ◦ ψ−1.

W 2
2 (µ, ν) = inf

q

{∫
Ω
|y − q(y)|2dµ(y)

∣∣∣∣ ν = q# µ

}
.

Brenier’s Theorem proves two formulations are equivalent and ∃
unique transport map q which is the gradient of a convex function.



SKIP: Connection with Optimal Transport
Take µ = dy and for a selection of N points in Ω, x = {xi},

νx =
N∑
i=1

miδxi , where mi = |Vi |

(
N∑
i=1

mi = |Ω| = 1

)
.

Unique optimal push forward is

q∗(y) = y − d
(
y , {xi}

)
∇d
(
y , {xi}

)
.

W 2
2 (µ, νx) = inf

q

{∫
Ω
|y − q(y)|2dy , µ ◦ q−1 = νx

}
=

∫
Ω
|y − q∗(y)|2dy

=

∫
Ω
d2
(
y , {xi}

)
dy =

N∑
i=1

∫
Vi

|y − xi |2dy .



SKIP: Connection with Optimal Transport

For any set set distinct points x = {xi}, let

νx =
N∑
i=1

miδxi with mi = |Vi |

(
N∑
i=1

mi = |Ω| = 1

)
.

Optimal Quantization is equivalent to minimizing W 2
2 (dx , νx)

over all points x = {xi}.

That is,
min

x={xi}Ni=1

W 2
2 (dx , νx).



Energy Driven Pattern Formation
Often entails nonconvex, nonlocal variational problems:

Continuum: polymeric, magnetic, elastic materials, . . .

Discrete: particles interactions.

Also: coordinated motion of systems (swarms, herds, crowds ....)

Two central issues:

1 can one conjecture and prove asymptotic statements on the
(geometric) nature of global minimizers.

2 can one develop hybrid numerical algorithms to navigate (or
probe) the energy landscape and access low energy states
whose basin of attraction might be “tiny”.

For discrete systems, the former is related to the Crystallization
Conjecture: within the confinements of a physical domain, N
interacting particles arrange themselves into a periodic
configuration.
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Explore these two issues in Optimal Quantization

Advantages:

– Elementary classification of critical points

– “Quasi” nonlocal behaviour: can more easily “control” (or
“isolate”) nonlocality.

As such, it presents a perfect paradigm to address issues 1 and 2.



Methods to generate CVTs

CVTs are important in a wide variety of applications:
Du, Faber & Gunzburger (SIAM Rev. ’99)

the simple elegant Lloyd’s Method: (Click)

Gradient descent via quasi-Newton: BFGS methods, graph
Laplacian (Hateley-Wei-Chen), . . .

Stochastic (McQueen, . . . )

. . .

The issue: There are many many CVTs!!!
Complex energy landscape
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A Few CVTs (critical points) on the square torus N = 20

PCVTs with N=20

PCVTs with N=20

PCVTs with N=20
 



First part of the talk: Address issue 1

Can one conjecture and prove asymptotic statements on the
(geometric) nature of global minimizers?

Joint with Xin Yang Lu (Lakehead University)
cf. C.-Lu Comm. Math. Phys 2020
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Global minimizer

Recall our problem: Over N points {xi}Ni=1 in Ω ⊂ Rn:

min
{xi}Ni=1

N∑
i=1

∫
Vi

|y − xi |2 dy

“Hard” to prove precise geometric properties of global minimizer
for generic (finite) N

What about as N → +∞?

Some questions:

Are Voronoi cells “almost congruent”?

What should be the shape of such Voronoi cells?
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Crystallization and Gersho’s Conjecture

The Augmented Gersho’s Conjecture in Rn:

(a) There exists a polytope V with |V | = 1 which tiles the space
with congruent copies such that the following holds: let
XN = {xNi }Ni=1 be a sequence of minimizers, then the Voronoi
cells of points XN are asymptotically congruent to N−1/nV as
N → +∞.

(b) In dimension n = 2, the optimal polytope V is a regular
hexagon, corresponding to a optimal placement of points on a
triangular lattice.
In dimension n = 3, the optimal polytope V is the truncated
octahedron, corresponding to an optimal placement of points
on a BCC (body centered cubic) lattice.
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Left: 2D optimal placement of points on a triangular lattice with
associated optimal Voronoi polytope a regular hexagon.

Right: 3D (conjectured) optimal placement of points on a BCC
lattice and the associated optimal Voronoi polytope the truncated
octahedron (8 regular hexagons and 6 squares).



Known results

1 Gersho’s conjecture is fully proven in 2D (Fejes Tóth, P.
Gruber, etc.): the optimal Voronoi tessellation is the
triangular lattice (“hexagonal”).

2 Still open in 3D.

(i) Barnes and Sloan have proven the optimality of the BCC
configuration amongst all lattice configurations

(ii) Du and Wang have provided numerical evidence for BCC
optimality.

Note: Gersho’s conjecture amounts to addressing a nonlocal and
non finite-dimensional variational problem.
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Uniform energy distribution: n = 3

Let us work with unit cube Ω. For each N, let XN be a minimizer.

Zador ’82: ∃ τ > 0 such that

N2/3E (XN)→ τ as N →∞.

Our slight refinement (C-Lu):

N2/3E (XN) ≥ τ ∀N � 1

with

τ ≥ 2π

5
ω
−5/3
3 ≈ 0.11545.

This lower bound is approximately half the energy density of the
BCC lattice (≈ 0.23562), the conjectured asymptotically optimal
configuration.
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Bounds on optimal Voronoi cells
Theorem (C-Lu): Let N ∈ N and XN be a minimizer.

Then ∃
constants Γ1, . . . , Γ5 such that such that for any x ∈ XN , with V
denoting its Voronoi cell, we have:

Γ3N
−1/3 ≤ diam (V ) ≤ Γ4(N − 2)−1/3

|V | ≥ ω3Γ3
5N
−1

V has at most N∗ := 2(3Γ4/Γ5)3 faces,

where: ω3 := 4π/3 and

Γ1 ≈ 0.013572, Γ3 ≈ 0.317769, Γ5 ≈ 0.000451

Γ4 ≈ 333.18 N∗ ≈ 2.94× 1020.
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Why are bounds relevant and useful?

We prove something (albeit expected) about the geometry of
the global minimizer!

Makes Gruber’s elegant 2D approach potentially “tractable”
in 3D;

Precisely, it reduces the resolution of the 3D Gersho’s
conjecture to a (albeit huge) finite number of convex

optimization problems.
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Gruber’s elegant proof of 2D Gersho’s conjecture (1999)

Let

G (a,m) := min
A is an

m-gon with area a

∫
A
|y−x̄ |2 dx , x̄ = centroid of A

is convex in both variables.

– minimum is attained on regular polygons

– via a direct Hessian computation, it is shown that there exists
an an extension of G to R+ × R+ convex in both variables.

In any Voronoi tessellation {Vi}Ni=1, the average number of
sides is at most 6.
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Let {Vi}Ni=1 be an arbitrary Voronoi tessellation with si the
number of sides of Vi , ai its area, and averages

ā :=
1

N

N∑
i=1

ai , s̄ :=
1

N

N∑
i=1

si .

Now we use convexity of G :

N∑
i=1

∫
Vi

|y − x̄i |2 dy ≥
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Issues with generalizing to 3D

Do not have, in general, regular m-hendrons

A priori, the number of faces of a CVT candidate can grow
with N

But: we just showed that the number of faces is bounded!
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Proceeding á la Gruber in 3D

1 the average number of faces (as N → +∞) of Voronoi cells is
some number m ≤ 14. 14 ∼ truncated octahedron.

2 we need to verify that the function

m 7→ min
V convex, |V |=α

V has at most m faces

∫
V
|y − x |2 dy , x centroid of V ,

is convex for m ≤ N∗.

3 verify that the optimal polytope V with m faces is space tiling.

4 we can dispense with the energetic contributions of the
boundary cell.
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So?

This reduces the resolution of the 3D Gersho conjecture to a
very large finite number of convex optimization problems.

Feasible for our current N∗?
No! So perhaps should try for better constants in our
bounds.
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Key Lemma

Key ingredient in the proof: Decrease in energy when adding
another point.

Lemma 1: Given a compact, convex set V ⊆ R3 with nonempty
interior, a point x in the interior of V , ∃ x ′ ∈ V such that∫

V
[|y − x |2 − d2(y , {x , x ′})] dy ≥ r2|V |

256
≥ Γ1|V |5/3,

where

Γ1 := 0.42/3/40 ≈ 0.013572, r := max
z ′∈∂V

|z ′ − x |.
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Final comments on first part of the talk

Current bound on the number of faces is far too large for the
computer to verify convexity.

Could prove useful to retrace estimates and optimize in the
constants.

Optimal quantizer on the 2-sphere? Always have defects.
Not much available even conjectures! The folklore seems to
surround structures like Goldberg polyhedra and “the soccer
ball”: N − 12 regular hexagons and 12 regular pentagons.
N = 32:

Currently these methods can be used to prove that the
number of non hexagons cells must be O(1) as N →∞.
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Next: Address issue 2

Develop hybrid numerical algorithms to navigate (or probe) the
energy landscape and access low energy states whose basin of
attraction might be “tiny”?

Part of PhD thesis of Ivan Gonzalez co-supervised with
Jean-Christophe Nave.

Gonzalez -C- Nave SIAM Sci. Comp. 2021

Take n = 2 and Ω = T2.



How to get close to the optimal CVT?

Complex Energy Landscape on T2 – Many many critical points,
some with tiny basins of attraction.

Global minimizers:

Recall, Gersho’s conjecture in 2D asserts the optimality of
regular hexagons.

On the torus with finite N, achieving this is impossible.
Importance of combinatorial size effects. Trade off is subtle.

Except for small N, basins of attraction far too small to
successfully implement gradient flow with Monte Carlo
initializations.
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Moving away from the closest generator (MACN)

Our motivation came from modelling Crowd Dynamics and
Collective Behaviours (last part of talk!).

One Step: Each generator moves a certain distance away
from its closest generator.

The choice of distance is important and we will consider two
possibilities, each with different purposes and effects:

1 centroidal distance: the distance from the generator to the
centroid of its Voronoi region (click) ;

2 a fixed distance

δ =
1

4

√
|T2|
N

.
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Hybrid algorithm

Start with random initial placement.

1 Preconditioning Step: Run MACN with centroidal distance
K -times;

2 Gradient Descent: Run any gradient descent method for
CVT (eg. Lloyds, L-BFGS, graph Laplacian, . . . ) until a
certain convergence reached;

3 Probe different basins of attraction: Run MACN once
with fixed distance

δ =
1

4

√
|T2|
N

(click) ;

4 Repeat Steps 1-3;

5 Stop at Step 2 when “low energy” state achieved.
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The few parameters of the algorithm

Q, the number of interactions of Steps 1 - 3. Typically for
N ∼ 1000, Q = 8 sufficient for good results.

Kq, the number of interactions of MACN in Step 1 for
q = 1, . . .Q.



How to assess a “low energy” state?
Global measure of optimality: Compute the normalized energy
and compare with “theoretical minimum”:

E (X ) =
N∑
i=1

∫
Vi

|y − xi |2 dy =
N∑
i=1

Ei Emin = NEhex

Ehex second moment of regular hexagon with area |T
2|

N = 1
N .

E r (X ) =
E (X )

Emin
=

1

N

N∑
i=1

Ei

Ehex
=

1

N

N∑
i=1

E r
i .

E r
i scaled “second moments” of (Vi , xi ).

Local measures of optimality: Optimal geometry of Voronoi
cells: H = % of hexagonal cells

Rε = % of ‘almost” regular hexagonal cells.
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Results for N = 1000

a sample run (click) ;

summarize experiments in a table (click) .



To conclude the second part

Our hybrid algorithm:

Effective, simple and deterministic with very few parameters.
Similar results on the sphere (paper in preparation).

Why does it works so well? i.e. navigate the energy landscape
with very few annealing steps.

Still needs some thought and work.

3D simulations? (appearance of BCC structure).
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Now Something Rather Different but Still Directly Linked to
Voronoi Tessellations and MACN:

Modelling Collective Behaviours:

Voronoi-Topological-Perception (VTP)

Work with Ivan Gonzalez, Jack Tisdell and Jean-Christophe
Nave.



The contrast and connection between individual and collective
behaviour in biological systems has fascinated researchers for
decades - e.g. tendency of groups of individual agents to form
flocks, swarms, herds, schools, etc.

Primary organizational mechanism in many models is
alingment eg. famous models of Cucker-Smale and Vicsek et
al. and. . . .

We present here the VTP model entirely based upon the
agents Voronoi environment (diagram and neighbours).

Certainly are not the first to use Voronoi diagrams in
collective behaviour (cf. Chaté, Ginelli, Grégoire, Lindhe, ...)

However, we present a novel and effective synthesis of the
three competing components (repulsion, alignment, and
homing) - relative weights easily motivated by a few realistic
and cognitively cheap assumptions on agents’ perception and
decisions based on their Voronoi environment.
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Discrete time model for N agents in some domain where their
Voronoi region represents their “personal space”.

The three active ingredients:
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Alingement averaging for ai

ãi = ãi (X ,U) =
1

#Ni

∑
j∈Ni

g(θij)ûj .

where ûj = uj/ ‖uj‖, θij = angle between ui and uj ,
the function g :
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ãi = ãi (X ,U) =
1

#Ni

∑
j∈Ni

g(θij)ûj .
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Adding repulsion, alignment, and homing
Initial conditions position xi (0) and “velocity” ui (0)

xi (t + 1) = xi (t) + fi (X (t),U(t))

where

fi (X ,U) = ρidi , di =
σi ri + νai + (1− σi )hi
σi + ν + bi (1− σi )

.

Repulsive fall-off distance L, σi = σ
(
δi
L

)
:
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Personal-space speed scale

ρi = tanh

(
Ai

πL2/2
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Summary of Parameters

4 parameters: alignment coefficient ν, repulsive falloff
distance L, number of agents N, and domain size |Ω|.

All the other “weights” ∼ local Voronoi geometry, modulo
transitions functions σ and g .

Two additional hidden parameters set to unity: the time step
and a characteristic speed inherent in our weights σ and bi .

Two effective dimensionless parameters:

ν and µ :=
L

(|Ω| /N)1/2
.
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Analysis? Purely numerical!

Nothing interesting in asymptotic regimes!

Start with random initial positions and velocities and explore
for different µ and ν;

In most cases, stabilize in some precise qualitative collective
behaviour;

In most cases, qualitative collective behaviour independent of
the initial conditions;

In all cases, behaviour stable with respect to small changes in
parameters, cut-off functions g , σ;

Compute observables along the way:
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Observables

Polarization (untargeted): P(U) =
‖∑i ui‖∑

i‖ui‖
.

Max = 1 when all velocities are in the same direction.

Angular momentum (point targets)

Energetic clustering:

E (X )

EN
, EN energy of N reg. hex. of area |Ω|/N.

Ratio big when there is clustering, close to 1 where there is
none.



Simplest case: No targets

Phase Diagram:

https://jacktisdell.github.io/Voronoi-Topological-Perception/



Similar PD for untargeted sphere



Point Targets: single, double, triple

https://jacktisdell.github.io/Voronoi-Topological-Perception/



To Conclude the Third Part

Voronoi topology natural to synthesize competing
organizational features.

VTP numerically simple and with only two parameters capable
of generating a wide class of collective behaviours.

Many further advances possible with VTP: sources, sinks,
obstacles, different agent behaviours, leadership . . .

So far quite generic. Can model be tailored to a particular
biological species or human crowds?

Drawback: no asymptotic regimes to analyze
For now just numerics.
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