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All biological phenomena emerge from intricate interactions between 
multiple levels of organization: 

microscopic level                       mesocopic level                    macroscopic level 

<< 10-7 m                                   10-6 m                              >> 10-5 m  

protein cascades 

chemical diffusion 

gene networks 

cell division  

adhesion  

migration 

tissue growth 

population dynamics 

 multicellular patterns  
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INTRODUCTION 

Mathematical approaches for biological problems employ a wide range 
of techniques, depending on the scale of interest: 

subcellular level                        cellular level                          tissue level 

<< 10-7 m                                      10-6 m                             >> 10-5 m  

   RD  SYSTEMS 
 

systems of ODEs 

    or PDEs 

kinetics equations 

INDIVIDUAL BASED 
MODELS 

discrete 

phenomenologic  

object-oriented  

CONTINUOUS 
METHODS 

microscopic scale                 mesoscopic scale                macroscopic scale 
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systems of PDEs 

populations as densities 

balance laws  

However, the use of a single specific type of model may be often unsatisfactory  



The CELLULAR POTTS MODEL is: 
 
 
  a hybrid and flexible individual-based approach, focused on the 

phenomenology of cell-level individuals 
     (cells, ECM fibers, unicellular organisms,…) 
 
 formed by a list of discrete individuals with phenomenological rules 

for their dynamics and interactions 
 
  a Monte Carlo iterative method, based on an energy-minimization 

philosophy driving how the simulated individuals behave 

MATHEMATICAL MODEL 
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The Cellular Potts Model (CPM) is a lattice-based Monte Carlo technique which 
follows an iterative and stochastic energy-minimization philosophy  

 a CPM domain is a d-dimensional lattice 
(i.e., a regular grid formed by identical 
d-dimensional lattice sites x), where 
d=2,3. Each site is identified by an 
integer number, called spin, σ(x) 
 
a set of contiguous lattice sites labeled 
by 
 the same spin σ form a single object, a 
discrete physical unit Σσ with a relative 
type τ(Σσ) 
 
connections between neighboring 
lattice sites of unlike state σ represent 
objects’ membranes 
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                                                      cells 

                                                      matrix fibers 
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Grid subdomains  may represent  entire single biological elements  
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….or element subcompartments, for example their intracellular 
compartments (nucleus, cytosol, PM, Golgi Apparatus, ER, ...) and 
organelles (mitochondria, ...) 

However, the more detailed is the cell representation, the more the 
model is computationally expensive.  
 
 

MARCO SCIANNA 

MATHEMATICAL MODEL 



Jσ(x),σ (x’), λσ and μσ are Potts coefficients describing the importance of 
the relative biophysical properties or mechanisms   

Hforce= - ∑k-force,σ [μk
σ Fk

σ] 

 effective and generalized forces (potential, chemotaxis, …) 
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The system energy is defined with an Hamiltonian H, which 
consists in the sum of terms relative to: 

 individual attributes (volume, surface, velocity,…) 

Hattr= ∑i-attribute,σ [λi
σ (ai

σ (t. v.)– Ai
σ (a. v.))2] 

Hadh=∑x,x’  Jσ(x),σ (x’) (1 – δσ(x),σ (x’) ) 

 adhesion between individuals (Steinberg’s DAH) 
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Individuals move and behave in order to iteratively and stochastically reduce H, with a 
simple algorithm: 

1-  choose a lattice site belonging to an individual membrane and attempt to copy its 
spin into a randomly chosen neighboring lattice site  
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1 1 2 

1 1 1 

2 

1 1 1 

1 1 1 

2- the difference in the system energy as a results of the attempt is calculated:             
ΔH=Hafter spin copy-Hbefore spin copy 
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3- the attempt is accepted with a Boltzmann-like probability: 

P(ΔH) =p(Tmoving object Σσ )min{1,exp(-ΔH/ Tmoving object Σσ )}, 

where  

 Tmoving object Σσ is the agitation rate of the object moving site belongs to 

 
    p is a maximum transition probability  

function characterized by: 
                              

               p(0)= 0 

 

               limT→+∞p(Tmoving object(t))=1 
 
 
4- the algorithm is repeated until the system reaches a global minimum or until a given 

observation time. Each iteration is defined a Monte Carlo Step 
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The model can be finally integrated by the evolution of molecular variables 
(i.e., ions, molecules, or genes) localized both within biological elements 
(within one of their subcompartments) and/or in the extracellular space. The 
dynamics of such microscopic variables are modelled by typical and suitable 
reaction-diffusion equations: 
 
 

    ∂c(x)⁄∂t           =       Dc ∂
2 c ⁄∂x2        -            a c          +              s 

 
 

Finally, we need to define constitutive laws describing how the 
molecular elements influence cell behavior 
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diffusion production       decay    variation of c 

within point x at 
time t 
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For example:  
 

 
the intracellular level 
of active cadherins or 
integrins will influence 
the cell-cell ahesion 
energy 

 
The level of 
extracellular growth 
factor will influence cell 
motilty 

MATHEMATICAL MODEL 



OVARIAN CANCER TRANS-
MESOTHELIAL INVASION 

(with Prof. A. Funaro) 
 

APPLICATIONS 

MS, Giverso, Lo Buono, Preziosi, Funaro, 
Math Model Nat Phenom, 2010. 
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OVARIAN 
CANCER TRANS-
MESOTHELIAL 

INVASION 
(with Prof. A. 

Funaro) 
 

MS, Giverso, Lo 
Buono, Preziosi, 
Funaro, Math 
Model Nat Phenom, 
2010. 

MARCO SCIANNA 

APPLICATIONS 



macro level 

APPLICATIONS 

WOUND HEALING ASSAY OF EPITHELIAL CELLS IN 
RESPONSE TO A MOTILITY FACTOR (i.e., HGF) 
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microscopic scale 
continuous approach (RDs) 

mesoscopic scale   
discrete approach  (CPM) 



t = 0 h 
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WOUND HEALING ASSAY OF EPITHELIAL CELLS IN 
RESPONSE TO A MOTILITY FACTOR (i.e., HGF) 
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t = 12 h 

MARCO SCIANNA 

WOUND HEALING ASSAY OF EPITHELIAL CELLS IN 
RESPONSE TO A MOTILITY FACTOR (i.e., HGF) 

APPLICATIONS 



the cell mass can be 
sorted into three 
subpopulations, 
namely internal, 
middle and external, 
characterized by 
well-defined 
migratory behavior 
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WOUND HEALING ASSAY OF EPITHELIAL CELLS IN 
RESPONSE TO A MOTILITY FACTOR (i.e., HGF) 

APPLICATIONS 



CELL SCATTERING OF 
MLP-29 COLONIES IN 
RESPONSE TO HGF/SF 
(with Prof. E. Medico) 

MS, Merks, Preziosi, 
Medico, J Theor Biol, 2009. 
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DIFFERENT MORPHOLOGIES OF TUMOR INVASION FRONTS 

MARCO SCIANNA 

microscopic scale 
continuous approach (RDs) 

mesoscopic scale   
discrete approach  (CPM) 



APPLICATIONS 

in silico and in vivo pT1 urothelial carcinoma invading into the lamina propria, with 
single aggressive malignant cells detaching from the main tumor mass 
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DIFFERENT MORPHOLOGIES OF TUMOR INVASION FRONTS 



APPLICATIONS 

in silico and in vivo microinvasive tumor of the cervix, with fingers of invading cells 
protruding through the basement membrane 
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DIFFERENT MORPHOLOGIES OF TUMOR INVASION FRONTS 



APPLICATIONS 

simulation of the evolution of a glioma 
spheroid. The tumor invasiveness is 
strictly regulated by intercellular 
adhesion  
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in the presented model, cells are defined as compartmentalized individuals differentiated 
in two basic objects: the nucleus (τ =N) and in the cytosolic region (τ =C) 
 
the extracellular environment is  instead formed by a two-component matrix, where: 

 
matrix fibers (τ =F, yellow) are bidimensional basic objects with defined measures and 
topology; 

 
the interstitial medium (τ =M, black) is a generalized object isotropically distributed 

throughout the simulation domain  

APPLICATIONS: CELL MIGRATION IN 3D SCAFFOLDS  



cells are seeded in an isotropic two-component 
matrix scaffold, characterized by a  regular 
mesh of inelastic fibers with square pores 
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cell movement is Brownian with a mean net 
displacement of 75 μm in 12 h, a velocity of 14 
μm/h , and a persistence time less than 1.5 h 
 

APPLICATIONS 

CELL MIGRATION IN 3D MATRIX SCAFFOLDS 
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CELL MIGRATION IN 3D MATRIX SCAFFOLDS 
 

a bimodal relation is found between cell motile behavor and cell-fiber adhesion 

APPLICATIONS 
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CELL MIGRATION IN 3D MATRIX SCAFFOLDS 
 

the directional component of cell motion increases until, in the case of all fibers aligned 
along the x-axis, cells movement is almost linear, with no change in cell velocity. 

APPLICATIONS 
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CELL MIGRATION IN 3D MICROCHANNELS 
 The model reproduces a micro-

fabricated device with channels of 
various width and a planar 
surface just outside their 
entrance. The cell migratory 
behavior is characterized by one 
of the following categories: i) 
cells that only penetrate the 
channel with a part of their 
cytoplasm are classified as 
penetrating, ii) cells that 
completely enter in the channel 
structure but are not able to 
migrate to the other side within 
the observation period are called 
invasive, iii) cells that reach the 
opposite border of the channel 
are finally termed permeative. 



APPLICATIONS 
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CELL MIGRATION IN 3D MICROCHANNELS 
 

Migratory behavior of cells with an elastic cytosol and a still rigid nucleus. They are now 
able to enter also in the intermediate channel, displaying a permeative behavior. However, 
they are constrained to stay outside the smaller structure.  



APPLICATIONS 
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CELL MIGRATION IN 3D MICROCHANNELS 
 

Migratory behavior of cells with an elastic cytosol and a deformable nucleus. The 
enhancement in nucleus elasticity enables cells to enter also in the smallest channel, 
where they acquire an invasive phenotype 



Blood vessel formation  is a complex and multilevel process fundamental in: 

           physiological conditions                                                 pathological situations 
 

menstrual cycle      
 

mammary gland during lactation  
 

granulation tissue after wound healing 

chronic inflammatory disease   
 

vasculopathies  
 

tissue injuring in ischemia 
 

cancer progression  

APPLICATIONS: TUMOR-DERIVED VASCULOGENESIS 
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Vascularization is a pivotal step in tumor development, providing the necessary 
nutrients and allowing malignant cells enter in the circulatory system 

time 

APPLICATIONS: TUMOR-DERIVED VASCULOGENESIS 
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The discovery of efficient anti-
angiogenic therapies is a 
fundamental issue in cancer 
research and treatment has given 
rise to multiple experiments, which 
aim to understand the key 
mechanisms involved in malignant 
vascularization and to identify 
intervention strategies potentially 
able to disrupt them 

Experimental image of a vascularized solid tumor, courtesy of the 
Institute for Cancer Research and Treatment, Candiolo, Italy 

APPLICATIONS: TUMOR-DERIVED VASCULOGENESIS 
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 (with Prof. L. Munaron)  

macro level 

APPLICATIONS: TUMOR-DERIVED VASCULOGENESIS 

microscopic scale 
continuous approach (RDs) 

mesoscopic scale   
discrete approach  (CPM) 
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The system of equations regulating the intracellular biochemical pathways is given as 

Extracellular VEGF   
 
 ∂hVEGF⁄∂t  =  DVEGF ∂2 hVEGF ⁄∂x2        -      kVEGF hVEGF         -      yVEGF hVEGF          +         sVEGF 

 
 
 

Intracellular messengers   
 
 ∂hAA⁄∂t     =  DAA ∂2 hAA ⁄∂x2              -          kAA hAA                +        jAA VEGFR          +       cAA Ca 
 
 
∂hNO⁄∂t      =    DNO ∂2 hNO ⁄∂x2          -          kNO hNO                 +        jNO VEGFR         +       cNO Ca          +     bAAhAA 
 

diffusion decay VEGF-induced 
production 

Ca-induced 
synthesis 

AA-induced 
synthesis 

   diffusion       decay cell uptake addition 
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Intracellular calcium   
 
∂Ca⁄∂t =     β(Ca) D∂2 Ca ⁄∂x2        +                   JAA      +       JNO                                    -           Jout 

 
 
 

β(Ca)D 

  buffered  diffusion    AA- and NO-dependent influxes    efflux 

APPLICATIONS: TUMOR-DERIVED VASCULOGENESIS 
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Evolution of intracellular calcium level during tubulogenesis 

calcium signals, which are typically peripheral restricted, are detectable in the initial phase of the 
process, while they are down regulated during the maturation of EC tubules. The initial increment  of 
calcium levels is in fact necessary for the enhancement of cell migratory properties 

APPLICATIONS: TUMOR-DERIVED VASCULOGENESIS 
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Inhibition of calcium entry: carboxyamidotriazole,CAI, compound 

complete disruption of tubule formation, as the TECs remain almost scattered 

Experimental image courtesy of LM and of the Department of 
Animal and Human Biology, Universita degli Studi di Torino. 

APPLICATIONS: TUMOR-DERIVED VASCULOGENESIS 
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Exclusion of either AA or NO biosynthesis -  AACOCF3 or L-NAME drugs 

formation of immature networks, where several branches have partially formed, 
but have not been able to organize into a single structure 

APPLICATIONS: TUMOR-DERIVED VASCULOGENESIS 
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Blocking cysotkeletal remodeling: 
phalloidin-like compounds  

formation of clumped, stunted, shorter 
and thicker sprouts, 

formation of immature and 
swollen sprouts characterized 
by large intervascular spaces 

Disruption of cell persistent 
movement 

APPLICATIONS: TUMOR-DERIVED VASCULOGENESIS 
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Disruption of chemotaxis 

formation of poorly structured  islands 
similar to those obtained by extinguish 
VEGF gradients 

formation of a reduced-in-scale 
network 

Increasing VEGF degradation:  

APPLICATIONS: TUMOR-DERIVED VASCULOGENESIS 
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The model allows to prove the efficacy some anti-angiogenic therapies  that are currently in use or in 
trial and to test the potential of other biomedical intervention strategies 

TECs remain scattered 

formation of 
immature networks 

clumped sprouts with 
 large intervascular spaces 

reduced-in-scale pattern 

poorly structured islands 

TECs remain scattered 

TECs remain scattered 

APPLICATIONS: TUMOR-DERIVED VASCULOGENESIS 
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