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Dirac’s notation

|0〉 means “the photon” passed through the slit F 0.

|1〉 means “the photon” passed through the slit F 1.

1√
2

(|0〉+ |1〉)

means “the photon underwent an experiment where both slits were
open”.

N.B.: A measurement of a photon in the last state, gives as a
result a photon in the “state” |0〉 with probability 0.5 or in the
state |1〉 with probability 0.5.



Partially closing a slit

Putting an absorber (e.g. a polaroid) on the slit 0, the likelihood of
finding the photon in the state |0〉 is lowered and that of finding
the photon in the state |1〉 is enhanced.

Then, the state of a photon that underwent such an experiment
can be represented by

a|0〉+ b|1〉

with a, b chosen in such a way that a2 + b2 = 1, |a| < |b|, and the
probability of finding the photon in |0〉 equals a2.



Changing the optical path

Putting a “dephaser” on the slit 0, the probability of passing
through either slit is 0.5, but the interference pattern is shifted.
Using the complex representation of the electromagnetic field, it
turns out that a good representation of the state of the photon is
the following

1√
2

(
e iϕ|0〉+ |1〉

)

In such a way we allowed complex linear combinations of the
symbols |0〉 and |1〉, that can be then thought of as elements of a
linear space.
Furthermore, we can introduce a scalar (hermitian) product s.t.

〈0|0〉 = 〈1|1〉 = 1, 〈0|1〉 = 0
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Axioms

Superposition principle: The states of a photon in a two-slit
experiment can be represented by the normalized elements of a
two-dimensional complex metric linear space, i.e.

|ψ〉 = α|0〉+ β|1〉

with α, β ∈ C s.t. |α|2 + |β|2 = 1.

Von Neumann’s Measurement Axiom: If one tries to determine
from which slit the photon has passed, then one finds the slit 0
with probability

|〈0|ψ〉|2 = |α|2

and 1 with probability

|〈1|ψ〉|2 = |β|2



The Qubit

A quantum system with a two-dimensional “state space” is called
a qubit, and can be considered as the quantum version of the
classical bit.

Important:

1. A qubit can experience states that are not |0〉 nor |1〉, but
rather “simultaneously” |0〉 and |1〉. They are called
superposition states or Schrödinger’s cat states.

2. However, a measurement always makes the state collapse on
either |0〉 or |1〉.



Two qubits

The space of the states of two qubits is the tensor product of two
state spaces of the single qubit. Namely,

(α|0〉+ β|1〉)⊗
(
α′|0〉+ β′|1〉

)
= αα′|0〉|0〉+ αβ′|0〉|1〉+ α′β|1〉|0〉+ ββ′|1〉|1〉
= αα′|00〉+ αβ′|01〉+ α′β|10〉+ ββ′|11〉

But other states are allowed, e.g.

1√
2

(|00〉+ |11〉)

or
1√
2

(|01〉+ |10〉)

These states cannot be factorized.



n qubits
The space of the states of two qubits is the n.th tensor power of
two state spaces of the single qubit. Namely,

n⊗
j=1

(αj |0〉j + βj |1〉j) = α1 . . . αn|0〉1 . . . |0〉n + . . .

+α1 . . . βn−1αn|0〉1 . . . |0〉n−1|1〉n + · · ·+ β1 . . . βn|1〉1 . . . |1〉n

= α1 . . . αn|0 . . . 0〉+ α1 . . . βn−1αn|0 . . . 01〉+ . . .

+β1 . . . βn|1 . . . 1〉

= α1 . . . αn|0〉+ α1 . . . βn−1αn|1〉+ . . .

+ + β1 . . . βn|2n − 1〉

1√
2

(|0 . . . 0〉+ |1 . . . 1〉)

cannot be factorized.



A needle in a haystack

We are given an unsorted list of items. We need one of them, but
we don’t have any reasonable method to sort it out from the bad
ones, but to try all of them, until we don’t get it.

Examples:
- A name in the telephone book.
- A forgotten password.
- A divisor of a given number...

The best classical algorithm known is to try all items. The mean
value of attempts we have to perform is N/2.
A quantum computer can find the desired item in O(

√
N)

attempts.



Testing (oracles)

All the problems in the examples share a feature: it is difficult to
find the solution, but it is easy to verify whether a given candidate
is the solution or not.
Mathematically, one
-first labels any item in the list by a natural number in
{0, . . .N − 1}. Call ω the label of the solution.
- then evaluates the function

fω : {0, . . .N − 1} → {0, 1}
fω(x) = 1 if x = ω

fω(x) = 0 otherwise

The problem is solved when the output in one. The length of the
precedure is the number of times you evaluate fω.



Schrödinger’s cats run faster

Classically, the average number of tests (= evaluations of f )
required to find the solution is N/2.

Using qubit in Schrödinger’s cat-like states, the number of tests
required is O(

√
N).

(Quantum speed-up algrithms, Deutsch 85, Shor 93, Grover 96)



Step 1

Suppose the list is made of N = 2n items.

Measure a huge number of qubits. Sometimes you will obtain 0,
sometimes 1. Keep n qubits in the state |0〉. You are then left with

|000 . . . 0000〉 =: |0〉

Now one has to process the n-qubit system. It is useful to
introduce a third axiom:
Any unitary transformation can be performed on the system.



Step 2
On a single qubit it possible to apply the Hadamard transformation

H|0〉 = 1/
√

2(|0〉+ |1〉)
H|1〉 = 1/

√
2(|0〉 − |1〉)

so that

H|0〉H|0〉 . . .H|0〉 =
1√
N

1∑
ji=0

|j1〉 . . . |jn〉

Or, in shorthand notation

H⊗n|0〉 =
1√
N

N−1∑
j=0

|j〉

I will denote this state by
|s〉



Steps 3 - O(
√
N): Grover’s operator

Define the operator (on the n-qubit space)

G := H⊗nRH⊗nO

where H⊗n is the Hadamard operator acting on n qubits, and

R = 2P0 − I = 2|0〉〈0| − I

So

H⊗nRH⊗n = H⊗n (2|0〉〈0| − I) H⊗n

= 2H⊗n|0〉〈0|H⊗n − H⊗nH⊗n

= 2|s〉〈s| − (H2)⊗n

= 2|s〉〈s| − I



The operator O: testing
Add a n + 1st qubit, |q〉 and implement the following unitary
operator that acts on n + 1 qubits as follows:

|x〉|q〉 → |x〉|q + fω(x) mod 2〉

If the additional qubit is prepared in the state

|q〉 = 1/
√

2(|0〉 − |1〉),

then

|q + fω(x)〉 = |q〉 if fω(x) = 0

|q + fω(x)〉 = −|q〉 if fω(x) = 1

so
|x〉|q〉 → (−1)fω(x)|x〉|q〉



Now forget about the additional qubit
Called |ω〉 the state to be found, with the aid of the additional
qubit we implement the following operator O:

O|j〉 = |j〉, j 6= ω

O|ω〉 = −|ω〉

Therefore

O|s〉 =
1√
N

N−1∑
j 6=ω, j=0

(|j〉 − |ω〉) = |s〉 − 2√
N
|ω〉

As an operator,

O = I− 2Pω = I− 2|ω〉〈ω|

N.B.: whenever we apply the operator O we are testing the
function f .



G = (2|s〉〈s| − I) (I− 2|ω〉〈ω|)
= 2|s〉〈s| − 4|s〉〈s|ω〉〈ω|+ 2|ω〉〈ω| − I

= 2|s〉〈s| − 4√
N
|s〉〈ω|+ 2|ω〉〈ω| − I

Let us define

|s ′〉 := |s〉 − 1√
N
|ω〉

so that

〈ω|s ′〉 = 〈ω|s〉 − 1√
N

= 0



Then, rewriting the operator G by using |s ′〉 instead of |s〉

G = 2|s ′〉〈s ′|+
(

2− 2

N

)
|ω〉〈ω| − 2√

N
|s ′〉〈ω|+ 2√

N
|ω〉〈s ′| − I

Notice that |s ′〉 is not normalized. Indeed

|s ′〉 = |s〉 − 1√
N
|ω〉 =

1√
N

N−1∑
j=0,j 6=ω

|j〉

so

〈s ′|s ′〉 =
N − 1

N

thus we define the normalized vector

|s ′′〉 =

√
N − 1

N
|s ′〉



G in the orthonormal basis |s ′′〉, |ω〉

G =

(
1− 2

N

)
|s ′′〉〈s ′′|+

(
1− 2

N

)
|ω〉〈ω|+ 2

N

√
N − 1|ω〉〈s ′′|

− 2

N

√
N − 1|s ′′〉〈ω| − P⊥

where P⊥ is the orthogonal projection on

Span
(
|s ′′〉, |ω〉

)
Notice that the interesting dynamics of G is in the two-dimensional
space spanned by |s ′′〉 and |ω〉.



Geometrical interpretation of G
Restrict to Span(|s ′′〉, |ω〉). In the given basis, the operator G is
represented by the matrix

G 7→

 1− 2
N

2
N

√
N − 1

− 2
N

√
N − 1 1− 2

N


Since(

1− 2

N

)2

+
4

N2
N − 1 = 1− 4

N
+

4

N2
+

4

N
− 4

N

2

= 1

one can define θ ∈ [0, 2π) s.t.

cos θ = 1− 2

N
, sin θ =

2

N

√
N − 1

so that

G 7→
(

cos θ sin θ
− sin θ cos θ

)
is a rotation in the plane.



The end

At each iteration of G the vector state is rotated by

θ = arcsin

(
2

N

√
N − 1

)
∼ 2√

N

The angle to be covered is

Θ = arccos
1√
N
∼ π

2
− 1√

N
∼ π

2

After
π

4

√
N

iteration, a measurement gives |ω〉 with probability

≥ 1− 4

N



In the case n = 2,N = 4 one has θ = arcsin
√
3
2 = π

3 , while the
angle between |s ′′〉 and s〉 equals π

6 .

In order to get |ω〉 one must evaluate f just once.
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Videos

1. The celebrated lecture by R. Feynman on the two-slit
experiment: http://www.youtube.com/watch?v=hUJfjRoxCbk
(with the famous statement “Nobody understands quantum
mechanics” (8’04)).

2. A nice animation on two-slit experiment
http://www.youtube.com/watch?v=DfPeprQ7oGc

3. A still nicer one: video “Double Slit Experiment - The
Strangeness Of Quantum Mechanics” on YouTube.


